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Abstract. We investigate in detail both the Cabibbo-allowed and singly Cabibbo-suppressed D → PV
decays based on the diagrammatic decomposition in the factorization formalism. Two sets of solutions
discarded in the literature are picked up and discussed carefully. It is found that one of these solutions

can provide satisfactory explanation in a natural manner on the process D+ → K
0
K∗+ which is thought

to be a puzzle. The relations EV + EP = 0 and AV + AP = 0 are badly broken, which indicates that
the exchange and annihilation diagrams may receive contributions from more sources other than the qq
intermediate state interactions. It is shown that, to have a consistent explanation to the experimental data
with reasonable values for the parameters a1 and a2, the SU(3) symmetry breaking effects have to be
considered. The SU(3) flavor symmetry breaking effects due to mass factors and due to formfactors and
decay constants are analyzed in detail.

1 Introduction

A great number of precise experimental data on charmed
meson nonleptonic two body decays have been accumu-
lated to guide, constrain and test the theoretical studies.
The theoretical settlement of this transition type gener-
ally appeals to factorization hypothesis. Empirically, non-
factorizable correction should be considered. But the non-
factorizable effects are relatively hard to be calculated in
charmed meson decays comparing with bottom meson de-
cays. Phenomenological models based on all kinds of sym-
metries are of importance to explore the decay zoos. But
in some cases, the breaking effects due to masses and due
to formfactors and decay constants can significantly be
enhanced.

In the quark diagrammatic scenario, all two-body non-
leptonic weak decays of charmed mesons can be expressed
in terms of six distinct quark-graph contributions [1,2]: (1)
a color-favored tree amplitude T , (2) a color-suppressed
tree amplitude C, (3) a W-exchange amplitude E, (4) a
W-annihilation amplitude A, (5) a horizontal W-loop am-
plitude P and (6) a vertical W-loop amplitude D. The
P and D diagrams play little role in practice because the
CKM matrix elements have the relation VcsVus ≈ −VcdVud

which will result in these diagrams cancelling each other.
Based on SU(3) flavor symmetry, the T , C, E and A am-
plitudes were fitted from the measured D meson decay
modes [3,4]. These amplitudes help one to understand the
generality of charmed meson decays. But since SU(3) fla-
vor symmetry breaking effects appear to be important as

pointed out in [5], these fitted data can not describe the
specific properties in certain decay modes. Most impor-
tantly, two sets of solutions considered as disfavored in
[3,4] will be shown to be reasonable in the formalism of
factorization. It is of interest to investigate how the SU(3)
flavor symmetry breaking will influence on charmed meson
transitions and what these sets of solutions can provide us.

In this paper, we will pay attention to the SU(3) fla-
vor symmetry breaking effects in charmed meson decays
to a pseudoscalar and a vector meson by using the quark-
graph description. Since factorization formalism reflects
SU(3) flavor symmetry breaking effects, it is convenient to
take such a formalism to investigate the symmetry break-
ing levels. Firstly by dividing these diagrams into factors
including SU(3) flavor symmetry breaking effects and in-
troducing parameters describing the overall properties, we
arrive at two sets of solutions for the parameters from fit-
ting experimental data without adding any assumption in
advance. Using the fitting parameters as inputs, we are
led to predictions for the branching ratios of other decay
modes which are expected to be measured in the future.
Of interest, one solution for a set of parameters that is re-
garded to be the disfavored solutions in [3,4] can provide
satisfactory explanation to the process D+ → K

0
K∗+.

So that the puzzle in the process [6] disappears and it is
not necessary to introduce new physics. It is also shown
that some relations containing contribution from AP −AV

are no longer reliable due to large SU(3) flavor symme-
try breaking effects. Except those relations, the breaking
effects due to masses and due to formfactors and decay



192 M. Zhong, Y.L. Wu, and W.Y. Wang: Global analysis of D → PV decays and SU(3) flavor symmetry breaking effects

constants can be as large as 12% and 16% respectively in
one set of solutions. For some processes the total breaking
amount can reach to 21%, when the two symmetry break-
ing effects due to masses and due to formfactors and decay
constants become to be coherently added. The breaking
effects due to masses and due to formfactors and decay
constants can add up to 18% and 24% respectively in an-
other set of solutions, which can lead to the total breaking
amount up to 43% in some processes. In addition, it is
worth stressing that D → PV decay modes receive large
nonfactorizable contributions. The relations EP = −EV

and AP = −AV , resulted from the assumption that the
contributions of all these four diagrams come from qq in-
termediate state interactions and used as inputs in [4], are
broken down. In contrast, EP and AP seem to be close to
EV and AV respectively, which implies that more sources
of contributions other than the qq intermediate state in-
teractions might be taken into account in these diagrams.

In methodology, there are some differences between
the [4] and the present paper. SU(3) invariant amplitudes
were extracted out from the Cabibbo-allowed two-body
D meson decays alone in [3,4]. However, only from the
Cabibbo-allowed two-body decays, there are not enough
decay modes as inputs and constraints to extract all the
amplitudes. Some assumptions about E and A amplitudes
have to be made and some knowledges on the color-favored
tree diagrams T and the color-suppressed tree diagrams
C have to be taken from the factorization hypothesis. In
this way, two sorts of inconsistency may arise. Firstly,
when the results presented in [4] are expanded to the
Cabibbo-suppressed modes, some of the predicted branch-
ing ratios are inconsistent with the experimental data.
Secondly, since the factorization hypothesis reflects SU(3)
flavor symmetry breaking effects, there may bring about
some inconsistency in logic when using its conclusions in
the SU(3) symmetry method. The second inconsistency
might be enhanced when the SU(3) symmetry breaking
effects are large enough. One will see that this sort of in-
consistency does appear in the D → PV decays, which
implies that the SU(3) symmetry breaking effects due to
mass factors and due to formfactors and decay constants
are too large to be ignored. In our method, by combining
the Cabibbo-allowed two-body decays with the Cabibbo-
suppressed ones, we have enough experimental inputs to
extract all of the parameters without any assumptions.
Moreover, there are additional experimental data to con-
strain our solutions. In this way, we obtain results which
are significantly different from that given in [3,4].

The paper is organized as follows. In Sect. 2, we list
the flavor decomposition of the corresponding mesons
and present the quark-diagram description for the decay
modes which have been observed. In Sect. 3, the parame-
terized formalism based on factorization is introduced to
investigate the processes. We then make a detailed nu-
merical analysis in Sect. 4 for the parameters and present
predictions for twenty one decay modes. The way to ex-
tract the parameterized ais from the invariant amplitudes
is studied in Sect. 5. The SU(3) flavor symmetry breaking
effects are discussed in Sect. 6. A short summary is given
in the last section.

2 Notation and quark-diagram formalism

We adopt the following quark contents and phase conven-
tions which have been widely used [2,3,4,7].

– Charmed mesons: D0 = −cu, D+ = cd, D+
s = cs;

– Pseudoscalar mesons P: π+ = ud, π0 = (dd−uu)/
√

2,
π− = −du, K+ = us, K0 = ds, K

0
= sd, K− = −su,

η = (−uu − dd + ss)/
√

3, η′ = (uu + dd + 2ss)/
√

6;
– Vector mesons V: ρ+ = ud, ρ0 = (dd − uu)/

√
2, ρ− =

−du, ω = (uu + dd)/
√

2, K∗+ = us, K∗0 = ds, K
∗0

=
sd, K∗− = −su, φ = ss.

In the above notations, u, d and s quarks transform as
a triplet of flavor SU(3) group, and −u, d and s as an
antitriplet, so that mesons form isospin multiplets without
extra signs. In general, the ηη′ mixing are defined as(

η

η′

)
=

(
cos φ − sin φ

sin φ cos φ

)(
η8

η0

)
(1)

with η0 = (uu+dd+ss)/
√

3 and η8 = (−uu−dd+2ss)/
√

6.
For convenience, we have taken the mixing parameter as
φ = 19.5◦ = sin−1(1/3) which is close to the value φ =
15.4◦ extracted from experiment [8].

The partial width Γ for D → PV decays is expressed
in terms of an invariant amplitude A as

Γ (D → PV ) =
p3

8πM2
D

|A|2 (2)

where

p =

√
(M2

D − (mP + mV )2)(M2
D − (mP − mV )2)

2MD

denotes the center-of-mass 3-momentum of each final par-
ticle.

We summarize in Table 1 the quark-diagram represen-
tation, the branching ratios[9] and invariant amplitudes
of the transition modes which are used as inputs to fix
the parameters involved in our considerations. In the nu-
merical analysis, we will use the masses and lifetimes for
the charmed mesons MD+ = (1869.3 ± 0.5)MeV with
τ(D+) = (1051 ± 13)fs, MD0 = (1864.5 ± 0.5)MeV with
τ(D0) = (411.7 ± 2.7)fs, and MD+

s
= (1968.5 ± 0.6)MeV

with τ(D+
s ) = (490 ± 9)fs [9]. In quark-diagram repre-

sentation the subscript P or V are assigned to T and C,
which are induced by c → q3q1q2 with the spectator quark
containing in pseudoscalar or vector final meson. The sub-
script P or V are labelled to E and A graphs which are
dominated by the weak process cq1 → q2q3 when the final
antiquark q3 stays in the pseudoscalar or vector meson.
S is added before E or A to distinguish the exchange or
annihilation graph involving in final singlet state contri-
butions which result from disconnected graphs. The total
contributions of the SE and SA graphs involving in π0

and ρ0 mesons are equal to zero because their contribu-
tions resulting from uu and −dd offset each other due to
the isospin SU(2) symmetry. In the numerical analysis, we
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Table 1. Quark-diagram presentation, branching ratios and invariant amplitudes of charmed mesons decaying to one pseu-
doscalar and one vector meson. Primes are added to the representation to denote the singly Cabibbo-suppressed processes

Initial Meson Decay Mode Representation B [9] p∗ |A|
(%) (MeV) (10−6)

K∗−π+ TV + EP 6.0 ± 0.5 711 4.83 ± 0.20
K−ρ+ TP + EV 10.2 ± 0.8 678 6.76 ± 0.26
K

∗0
π0 1√

2
(CP − EP ) 2.8 ± 0.4 709 3.31 ± 0.24

D0 K
0
ρ0 1√

2
(CV − EV ) 1.47 ± 0.29 676 2.57 ± 0.25

K
∗0

η 1√
3
(CP + EP − EV + SEV ) 1.8 ± 0.4 580 3.59 ± 0.40

K
0
ω − 1√

2
(CV + EV ) 2.2 ± 0.4 670 3.20 ± 0.29

K
0
φ −EP − SEP 0.94 ± 0.11 520 3.05 ± 0.18

K
∗0

π+ TV + CP 1.92 ± 0.19 712 1.71 ± 0.08
π+φ C ′

P − SA ′
P 0.61 ± 0.06 647 1.113 ± 0.055

D+ K
0
ρ+ TP + CV 6.6 ± 2.5 680 3.40 ± 0.64

π+ρ0 − 1√
2
(T ′

V + C ′
P − A ′

P + A ′
V ) 0.104 ± 0.018 769 0.355 ± 0.031

K+K
∗0

T ′
V − A ′

V 0.42 ± 0.05 610 1.008 ± 0.060
K

∗0
K+ CP + AV 3.3 ± 0.9 682 3.69 ± 0.50

K
0
K∗+ CV + AP 4.3 ± 1.4 683 4.20 ± 0.68

D+
s π+ρ0 1√

2
(AV − AP ) 0.06‡(< 0.07) 822 0.37‡(< 0.40)

π+φ TV + SAP 3.6 ± 0.9 712 3.61 ± 0.45

‡ The central value of the E791 experiment [30].

will assume that the contributions of the SEP and SEV

graphs involving in ω and φ mesons are negligibly small
since they seem not to contradict with the Okubo-Zweig-
Iizuka rule. But the amplitude SAV seems to play an im-
portant role in the D+

s → ρ+η and D+
s → ρ+η′ processes

[10]. In the ideal mixing case, the process D+
s → π+ω has

the amplitude representation as 1√
2
(AV + AP + 2SAP ).

Since ω has the similar quark structure as comparison
with η and η′, we assume that SAP also has important
contribution in D+

s → π+ω. In the present paper, we
shall not consider the processes which receive contribu-
tions from SAV and SAP diagrams resulting from the
final state particles η, η′ or ω . The sign flips in the pre-
sentation of some relevant Cabibbo-favored modes come
from the quark contents of final light mesons. In the singly
Cabibbo-suppressed modes, the sign flips may come either
from the quark contents of the final light mesons or from
the CKM matrix element VcdVud since VcsVus ≈ −VcdVud

and we choose VcsVus in the calculations. In Table 1
and Table 4, a prime is added to the diagrams of singly
Cabibbo-suppressed modes to distinguish them from the
Cabibbo-favored ones.

3 Flavor SU(3) symmetry breaking
description in factorization formalism

To investigate the SU(3) flavor symmetry breaking terms,
we take the formalism of factorization approach. In [11], a
detailed discussion on the factorization has been applied to

nonleptonic two-body bottom meson decays. For D → PV
decays, amplitudes can be written in the factorized form
as [12,13]

TV =
GF√

2
Vq1q2V

∗
cq3

aTV
2fP mDiA

Di→V
0 (m2

P ), (3)

TP =
GF√

2
Vq1q2V

∗
cq3

aTP
2fV mDi

FDi→P
1 (m2

V ), (4)

CV =
GF√

2
Vq1q2V

∗
cq3

aCV
2fP mDi

ADi→V
0 (m2

P ), (5)

CP =
GF√

2
Vq1q2V

∗
cq3

aCP
2fV mDiF

Di→P
1 (m2

V ), (6)

EV =
GF√

2
Vq1q3V

∗
cq2

aEV
2fDimDiA

PV
0 (m2

Di
), (7)

EP =
GF√

2
Vq1q3V

∗
cq2

aEP
2fDi

mDi
APV

0 (m2
Di

), (8)

AV =
GF√

2
Vq2q3V

∗
cq1

aAV
2fDimDiA

PV
0 (m2

Di
), (9)

AP =
GF√

2
Vq2q3V

∗
cq1

aAP
2fDi

mDi
APV

0 (m2
Di

), (10)

where Di denotes D±, D0 or Ds. Vud, Vus and V ∗
cs are the

relevant CKM matrix elements. F1 and A0 are formfactors
defined in the following formalism

〈P (p)|q̄γµc|D(pD)〉 =
[
(pD + p)µ − m2

D − m2
P

q2 qµ

]

F1(q2) +
m2

D − m2
P

q2 qµF0(q2), (11)
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〈V (p)|q̄γµ(1 − γ5)c|D(pD)〉 = −i(mD + mV )A1(q2)

(ε∗µ − ε∗ · q

q2 qµ) + i
A2(q2)

mD + mV

(ε∗ · q)((pD + p)µ − m2
D − m2

V

q2 qµ)

−i
2mV

q2 (ε∗ · q)A0(q2)qµ

− 2V (q2)
mD + mV

εµαβγε∗
αpDβpγ , (12)

〈P (pP )V (pV )|jµ|0〉 = −i(mP + mV )APV
1 (q2)

(ε∗µ − ε∗ · q

q2 qµ) + i
APV

2 (q2)
mP + mV

(ε∗ · q)((pP − pV )µ − m2
P − m2

V

q2 qµ)

−i
2mV

q2 (ε∗ · q)APV
0 (q2)qµ

−2V PV (q2)
mP + mV

εµαβγε∗
αpPβpV γ , (13)

with q = pD − p. fP and fV are decay constants defined
as

〈P (p)|q̄1γ
µγ5q2|0〉 = −ifP pµ, (14)

〈V (p)|q̄1γ
µq2|0〉 = fV mV εµ. (15)

It is obvious that SU(3) flavor symmetry breaking ef-
fects are embodied in equations (3)-(10). These effects re-
sult from masses (mP ,mV ,mDi), decay constants and form
factors.

In naive factorization hypothesis, one has the following
equalities

aTV
= aTP

= aAV
= aAP

= a1(µ), (16)
aCV

= aCP
= aEV

= aEP
= a2(µ), (17)

with

a1(µ) = c1(µ) +
1

Nc
c2(µ), (18)

a2(µ) = c2(µ) +
1

Nc
c1(µ), (19)

denoting the relations between quantities a1,2 and Wilson
coefficients c1,2. Nc is the number of colors. In charmed
decays, large-Nc is justified because it can greatly improve
the discrepancy between theory and experiment. µ is the
renormalization scale at which c1 and c2 are evaluated. So
a1 and a2 are common real quantities of a certain process
in quark level. To be more explicit, for decay modes in-
duced by c → s transition, a1 and a2 are invariant among
all modes in naive factorization hypothesis.

However, naive factorization approach fails to describe
charmed meson decays, particularly for the decay modes
which involve in the color-suppressed diagrams due to the
smallness of |a2|. Furthermore, the coefficients a1 and a2
in Eqs.(16) and (17) depend on the renormalization scale
and γ5 scheme. On the other hand, it is also necessary

to consider the nonfactorizable corrections which involve
in hard spectator interactions, final state interactions and
resonance effects etc. In this case, one can express a1 and
a2 in the form

a1(µ) = c1(µ) + (
1

Nc
+ χ1(µ))c2(µ), (20)

a2(µ) = c2(µ) + (
1

Nc
+ χ2(µ))c1(µ), (21)

with χ1(µ) and χ2(µ) terms denoting the nonfactorizable
effects. Furthermore, with nonfactorization corrections the
equalities (16) and (17) are not yet satisfied because each
ai should contain term from corrections. The nonfactor-
ization corrections can also bring phase differences among
these coefficients, and then ais (i = TV,P , CV,P , EV,P and
AV,P ) turn into complexes. In general, explicit calculations
of total nonfactorizable corrections are not yet possible.
We shall take all ais as independent complex parameters
and assume that the corrections do not depend on indi-
vidual decay process at certain scale. In other words, ais
do not include SU(3) flavor symmetry violation contribu-
tions. It is supposed that mass factors, decay constants
and formfactors have taken on the whole SU(3) symmetry
breaking effects.

4 Numerical analysis and results

The explicit evaluation of the relevant formfactors in the
factorization formula (3)-(10) are not yet available because
of the nonperturbative long distance effects of QCD. But
some reasonable methods, such as QCD sum rules[14,15],
lattice simulations [16,17] and phenomenological quark
model [18,19], have been developed to estimate the long
distance effects to rather high certainties. The formfactors
of D mesons decaying to light mesons have been widely
discussed in [20,21,22,23,24,25]. In our research, we shall
use the results obtained by Bauer, Stech and Wirbel [20]
based on the quark model. They have been found to be
rather successful in describing a number of processes con-
cerning D mesons. The values of the relevant formfactors
evaluated at q2 = 0 are listed in Table 2. For the depen-
dence on q2, the formfactors are assumed to behave as a
monopole dominance

D → P : F1(q2) =
F1(0)

1 − q2/m2
F ∗

, (22)

D → V : A0(q2) =
A0(q2)

1 − q2/m2
F

, (23)

where mF and mF ∗ are the pole masses given in Table 2.
The formfactors APV

0 involving in the exchange and
annihilation amplitudes are hard to relate directly to ex-
perimental measurements. They are greatly suppressed
at large momentum transfer q2 = m2

Di
, which leads to

the smallness of the contributions from the factorizable
exchange and annihilation diagrams. The main contribu-
tions of these diagrams may result from the unfactorizable
forms. Through intermediate states, these diagrams relate
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Table 2. Relevant formfactors at zero momentum transfer for D → P and D → V transitions and pole masses in BSW model

Decay D → π D → ρ(ω) D → K D → K∗ Ds → K Ds → K∗ Ds → φ D → η/η′ Ds → η/η′

F1 0.692 0.762 0.643 0.681/0.655 0.723/0.704
A0 0.669 0.733 0.634 0.700

mF (GeV ) 1.87 1.97 1.87 1.97
mF ∗(GeV ) 2.01 2.11 2.01 2.01 2.11

Table 3. Values of decay constants in MeV

fπ fK f8 f0 fD fDs fρ fK∗ fω fφ fD∗ fD∗
s

134 158 168 157 200 234 210 214 195 233 230 275

Table 4. Predicted branching ratios for charmed mesons decaying to one pseudoscalar and one vector meson

Meson Decay Representation Experimental Present B(×10−2) B(×10−2)
Mode B(×10−2) case (I) case (II) in [31]

K+K∗−
T ′

V + E ′
P 0.20 ± 0.11 0.25 0.25 0.30

K−K∗+
T ′

P + E ′
V 0.38 ± 0.08 0.42 0.41 0.43

K0K
∗0

E ′
V − E ′

P < 0.17 0.03 0.02 0.062
K

0
K∗0

E ′
P − E ′

V < 0.09 0.03 0.02 0.064
π0φ 1√

2
(C ′

P + SE ′
P ) < 0.14 0.12 0.12 0.11

K
∗0

η ′ − 1√
6
(CP + EP + 2EV + 4SEV ) < 0.10 0.008 0.01 0.004

ηφ 1√
3
(C ′

P − 2SE ′
P + SE ′

V ) < 2.8 0.04 0.04 0.090

D0 π+ρ− −(T ′
V + E ′

P ) — 0.34 0.34 0.57
π−ρ+ −(T ′

P + E ′
V ) — 0.64 0.65 0.69

π0ρ0 1
2 (C ′

P + C ′
V − EP − EV ) — 0.12 0.24 0.12

π0ω 1
2 (C ′

V − C ′
P + E ′

P + E ′
V + 2SE ′

P ) — 0.24 0.20 0.014
ηω − 1√

6
(C ′

P + 2C ′
V + SE ′

V + 4SE ′
P ) — 0.0007 0.07 0.20

η ′ω 1
2

√
3
(C ′

P − C ′
V + 4SE ′

V − 2SE ′
P ) — 0.003 0.0006 0.0001

ηρ0 1√
6
(2C ′

V − C ′
P − SE ′

V ) — 0.11 0.005 0.020

η ′ρ0 1
2

√
3
(C ′

V + C ′
P + 4SE ′

V ) — 0.0005 0.003 0.008

K
0
K∗+

T ′
P − A ′

P 3.1 ± 1.4 3.47 0.59 1.71
D+ π0ρ+ − 1√

2
(T ′

P + C ′
V + A ′

P − A ′
V ) — 0.23 0.36 0.44

π+K∗0 −(T ′
V − A ′

V ) 0.65 ± 0.28 0.51 0.21 0.29
K+ρ0 − 1√

2
(C ′

P + A ′
P ) < 0.29 0.16 0.08 0.29

D+
s K0ρ+ −(T ′

P − A ′
P ) — 2.73 0.27 1.39

π0K∗+ − 1√
2
(C ′

V + A ′
V ) — 0.76 0.01 0.044

to the tree diagram T and color-suppressed diagram C [12,
26]. Their contributions may be important and can not be
ignored. In our present work, we let aEi,Ai(i = P, V ) ab-
sorb the relevant formfactors APV

0 (m2
Di

) and take them
as global parameters to be fitted, i.e. aEi,Ai

APV
0 (m2

Di
) →

aEi,Ai . In this way, the formula (7)-(10) have the following
expressions

EV =
GF√

2
Vq1q3V

∗
cq2

aEV
2fDi

mDi
, (24)

EP =
GF√

2
Vq1q3V

∗
cq2

aEP
2fDimDi , (25)

AV =
GF√

2
Vq2q3V

∗
cq1

aAV
2fDimDi , (26)

AP =
GF√

2
Vq2q3V

∗
cq1

aAP
2fDimDi . (27)

It is noted that the formfactors are more appropriate to
be viewed as the relative scaling factors that characterize
one source of SU(3) flavor symmetry breaking effects in

hadronic matrix elements since we take the ais as free
parameters that need to be extracted from experimental
inputs in the present method. The relative ratio between
the formfactors is what we really care about.

The input values for the light pseudoscalar and vector
decay constants are presented in Table 3 [11,27]. These
values generally coincide with experiment. According to
[11], the decay constants fu

η , fs
η , fu

η′ and fs
η′ involving in

factorization formula should be defined as follow:

〈0|uγµγ5u|η(′)(p)〉 = ifu
η(′)p

µ, (28)

〈0|sγµγ5s|η(′)(p)〉 = ifs
η(′)p

µ. (29)

Then the quantities fu
η , fs

η , fu
η′ and fs

η′ take the formalism

fu
η =

f8√
6

cos φ +
f0√
3

sin φ, (30)

fs
η =

2f8√
6

cos φ − f0√
3

sin φ, (31)

fu
η′ = − f8√

6
sin φ +

f0√
3

cos φ, (32)
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Table 5. Preferred solutions of the SU(3) invariant amplitudes in [4] and in the present method. The values in the first entry
(×10−6) are for the magnitudes of the amplitudes and those in the second entry are for the strong phases

TV TP CV CP EV EP AV AP

The Case (α) 3.61 7.27 4.06 4.75 0.58 3.05 4.52 4.95
— 4.3◦ 172.3◦ 161.4◦ −148.3◦ 87.4◦ −65.4◦ −62.2◦

Present Case (α′) 3.61 7.29 4.04 4.58 0.71 3.05 4.16 4.67
— −1.0◦ 168.3◦ 160.0◦ −140.8◦ 87.4◦ −69.7◦ −68.8◦

Values Case (β′) 3.61 5.96 2.71 2.44 3.15 3.05 1.47 1.44
— 44.2◦ −121.6◦ −155.8◦ −45.4◦ 87.4◦ 243.8◦ 223.7◦

[4] 3.61 ± 0.45 6.03 ± 1.15 2.74 ± 0.46 2.44 ± 0.52 3.05 ± 0.18 3.05 ± 0.18 — —
— (−3 ± 25)◦ (−168 ± 24)◦ (−156 ± 12)◦ (−90 ± 22)◦ (88 ± 11)◦ — —

Table 6. ais extracted from the corresponding SU(3) invariant amplitudes in Table 5. The values in the brackets are corre-
sponding to the decay modes D+

s → PV . Only the central values are quoted. The case (I) and (II) are the solutions solved
out in Sect. 4. The first entry in case (I) and case (II) is for |ai| and the second entry for the strong phase. The coefficients
aTV and aTP are corresponding to a1 extracted from the TV and TP diagrams respectively. The coefficients aCV and aCP are
corresponding to a2 extracted from the CV and CP diagrams respectively

Di → πρ Di → πK∗ Di → Kρ Di → KK∗ Di → πφ Case (I) Case (II)
|aTV | Case (α) 1.34 1.22 (1.34) 1.05 0.98 (1.07) (1.21) 1.21 1.21

[4] 1.34 1.22 (1.34) 1.05 0.98 (1.07) (1.21) — —
|aTP | Case (α) 1.43 1.32 1.32 (1.46) 1.23 (1.35) 1.12 1.23 1.09

[4] 1.19 1.09 1.09 (1.21) 1.01 (1.12) 0.93 151.4◦ −36.1◦

|aCV | Case (α) 1.50 1.39 (1.50) 1.20 1.09 (1.19) (1.37) 1.00 0.69
[4] 1.02 0.93 (1.01) 0.81 0.74 (0.81) (0.92) −26.3◦ 134.1◦

|aCP | Case (α) 0.94 0.86 0.86 (0.96) 0.80 (0.89) 0.72 0.78 0.78
[4] 0.48 0.45 0.44 (0.49) 0.41 (0.45) 0.38 158.1◦ 158.1◦

|aEV | Case (α) 0.09 (0.07) 0.10 (0.07) 0.09 (0.07) 0.10 (0.07) 0.09 (0.07) 0.38 0.56
[4] 0.51 (0.42) 0.51 (0.41) 0.51 (0.42) 0.51 (0.41) 0.51 (0.41) 50.9◦ 57.3◦

|aEP | Case (α) 0.51 (0.42) 0.51 (0.41) 0.51 (0.42) 0.51 (0.41) 0.51 (0.41) 0.51 0.51
[4] 0.51 (0.42) 0.51 (0.41) 0.51 (0.42) 0.51 (0.41) 0.51 (0.41) 87.0◦ 87.0◦

|aAV | Case (α) 0.81 (0.61) 0.75 (0.61) 0.81 (0.61) 0.75 (0.61) 0.75 (0.61) 0.91 0.20
[4] — — — — — −52.8◦ −81.4◦

|aAP | Case (α) 0.83 (0.67) 0.82 (0.67) 0.83 (0.67) 0.82 (0.67) 0.83 (0.67) 0.98 0.27
[4] — — — — — −53.8◦ −75.0◦

fs
η′ =

2f8√
6

sin φ +
f0√
3

cos φ. (33)

By these definitions, the following factorization formal-
isms are adopted in the D → η(η′)V transition calculation

2CV (Di → ηV ) =
GF√

2
Vq1q2V

∗
cq3

aCV
2(fu

η + fs
η )mDiA

Di→V
0 (m2

η), (34)

CV (Di → η′V ) =
GF√

2
Vq1q2V

∗
cq3

aCV
2(fs

η′ − fu
η′)mDiA

Di→V
0 (m2

η′). (35)

The other parameters used in the numerical calcu-
lation are the masses of relevant mesons, lifetimes of
charmed mesons and relevant CKM matrix elements. We
adopt the relevant values given in [9].

For convenience, we may express the complex parame-
ters ai as

ai = |ai|eiδai . (36)
The δais characterize the strong phases. One can always
choose δaTV

= 0 so that all the other strong phases are

relative to δaTV
. There are 15 independent parameters to

be extracted from experiments.
From Table 1, one can observe that the decay processes

D+
s → π+φ, D0 → π+K∗− and D0 → K

0
φ can be solved

to provide information on aTV
and aEP

. These solutions
are given as follow

|aTV
| = 1.21, (37)

|aEP
| = 0.51, δaEP

= 87.0◦. (38)

The next leading order Wilson coefficients c1(mc) = 1.174
and c2(mc) = −0.356 in the naive dimensional regular-
ization (NDR) scheme or c1(mc) = 1.216 and c2(mc) =
−0.424 in the ’tHooft-Veltman (HV) scheme are given
in [28] when ΛMS = 0.215GeV. The present value of
|aTV

| = 1.21 amounts to large Nc in formula (18).
There are three processes D+ → π+K

∗0
, D0 → π0K

∗0

and D+ → π+φ which can provide us information on aCP
.

By combining D+ → π+K
∗0

and D0 → π0K
∗0

, one can
find two sets of solutions for aCP

.

(a). |aCP
| = 0.83, δaCP

= 159.4◦; (39)
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Table 7. An example of nonvanished contribution of disconnected diagram SEP . The second column and the third column are
for the central values of ais in case (I) solution with aSEP = 0.03ei87.0◦

as input and in case (II) solution with aSEP = 0.03e−i93.0◦

as input respectively.

Magnitude and Relative Strong Phase in Case (I) Magnitude and Relative Strong Phase in Case (II)
aTV 1.21 1.21

— —
aTP 1.20 1.05

136.0◦ −24.5◦

aCV 0.96 0.64
−39.1◦ 143.9◦

aCP 0.76 0.79
156.7◦ 159.5◦

aEV 0.42 0.58
38.0◦ 67.8◦

aEP 0.43 0.59
78.3◦ 94.3◦

aAV 0.93 0.24
−51.3◦ −80.0◦

aAP 1.00 0.32
−52.6◦ −78.2◦

(b). |aCP
| = 0.43, δaCP

= −154.6◦.(40)

The solution in case (a) was regarded as the disfavored
solution in [3,4] since it induces |CP | > |TV | in SU(3) fla-
vor symmetry limit. In the viewpoint of factorization for-
malism, the case (b) solution means little corrections from
the unfactorizable contributions in the method of large Nc

in formula (21), while the case (a) solution indicates pos-
sible big corrections from the unfactorizable contributions
in formula (21). There is no reason to exclude the case (a)
solution. Conversely, if one uses the process D+ → π+φ,
one can obtain |aCP

| = 0.76, which indicates that the
case (a) solution sounds more reasonable. After perform-
ing a fit procedure on these three processes D+ → π+K

∗0
,

D0 → π0K
∗0

and D+ → π+φ, we have the following value
for aCP

|aCP
| = 0.78, δaCP

= 158.1◦, (41)

when

Br(D+ → π+K
∗0

) = 1.79%, (42)

Br(D0 → π0K
∗0

) = 2.47%, (43)
Br(D+ → π+φ) = 0.64%. (44)

One will find that this solution can provide a good expla-
nation for the process D+ → K

0
K∗+ which was consid-

ered to be a puzzle in [6].
Combining D+ → K+K

∗0
and D+

s → K+K
∗0

, we
obtain two sets of solutions for aAV

.

( I). |aAV
| = 0.91, δaAV

= −52.8◦;(45)

(II). |aAV
| = 0.20, δaAV

= −81.4◦.(46)

Correspondingly, there are also two sets of values for the
other parameters which still need to be solved and we will
also label them as the case (I) and case (II) correspond-
ingly.

In the process D+
s → π+ρ0, the amplitude |AV | equals

to 6.73×10−6 in case (I) solution and equals to 1.48×10−6

in case (II) solution. To maintain the experimental upper
bound of the process, the phase angle between AV and AP

should be less than 90◦ which means the breakdown of the
relation AV = −AP obtained on the basis of G-parity ar-
gument on qq resonance [29] in both case solutions. Since
ω meson may contain an unknown fraction of ss which
would permit a TV amplitude in the process D+

s → π+ω,
and most importantly, since ω may induce important con-
tribution from SAP diagram, we shall take the process
D+

s → π+ρ0 instead of D+
s → π+ω as an input to solve

out the aAP
. The Fermilab E791 Collaboration recently

reported the measurement Γ (D+
s → π+ρ0)/Γ (D+

s →
π+π+π−) = (5.8 ± 2.3 ± 3.7)%[30]. Though it does not
have enough statistic significance, it is still appropriate
for us to take the central value in our calculation. The
branching ratio B(D+

s → π+π+π−) = (1.01 ± 0.28)% was
reported in [9]. If we ignore the difference between the
scales characterizing the c → s and c → d transitions, we
can solve the processes D+

s → π+ρ0, D+ → π+ρ0 and get
the values

( I). |aAP
| = 0.98, δaAP

= −53.8◦;(47)

(II). |aAP
| = 0.27, δaAP

= −75.0◦.(48)

From formula (26) and (27), it is observed that we have
the relation AP ≈ AV in contrast to AP + AV = 0, which
implies that rescattering effects may cause important con-
tributions to break down the relation AP + AV = 0.
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Table 8. Predicted branching ratios for charmed mesons decaying to one pseudoscalar and one vector meson with nonvanished
contribution of disconnected diagram SEP . We take aSEP = 0.03ei87.0◦

as input in case (I) solution and aSEP = 0.03e−i93.0◦

in case (II) solution.

Meson Decay Representation Experimental Present B(×10−2) B(×10−2)
Mode B(×10−2) case (I) case (II) in [31]

K+K∗− T ′
V + E ′

P 0.20 ± 0.11 0.26 0.26 0.30
K−K∗+ T ′

P + E ′
V 0.38 ± 0.08 0.43 0.41 0.43

K0K
∗0

E ′
V − E ′

P < 0.17 0.02 0.02 0.062
K

0
K∗0 E ′

P − E ′
V < 0.09 0.02 0.02 0.064

π0φ 1√
2
(C ′

P + SE ′
P ) < 0.14 0.13 0.12 0.11

K
∗0

η ′ − 1√
6
(CP + EP + 2EV + 4SEV ) < 0.10 0.006 0.015 0.004

ηφ 1√
3
(C ′

P − 2SE ′
P + SE ′

V ) < 2.8 0.03 0.04 0.090
D0 π+ρ− −(T ′

V + E ′
P ) — 0.34 0.35 0.57

π−ρ+ −(T ′
P + E ′

V ) — 0.64 0.64 0.69
π0ρ0 1

2 (C ′
P + C ′

V − EP − EV ) — 0.14 0.23 0.12
π0ω 1

2 (C ′
V − C ′

P + E ′
P + E ′

V + 2SE ′
P ) — 0.26 0.16 0.014

ηω − 1√
6
(C ′

P + 2C ′
V + SE ′

V + 4SE ′
P ) — 0.001 0.06 0.20

η ′ω 1
2
√

3
(C ′

P − C ′
V + 4SE ′

V − 2SE ′
P ) — 0.003 0.0009 0.0001

ηρ0 1√
6
(2C ′

V − C ′
P − SE ′

V ) — 0.10 0.004 0.020
η ′ρ0 1

2
√

3
(C ′

V + C ′
P + 4SE ′

V ) — 0.0005 0.003 0.008

K
0
K∗+ T ′

P − A ′
P 3.1 ± 1.4 3.62 0.60 1.71

D+ π0ρ+ − 1√
2
(T ′

P + C ′
V + A ′

P − A ′
V ) — 0.21 0.33 0.44

π+K∗0 −(T ′
V − A ′

V ) 0.65 ± 0.28 0.53 0.21 0.29
K+ρ0 − 1√

2
(C ′

P + A ′
P ) < 0.29 0.16 0.09 0.29

D+
s K0ρ+ −(T ′

P − A ′
P ) — 2.87 0.30 1.39

π0K∗+ − 1√
2
(C ′

V + A ′
V ) — 0.80 0.016 0.044

When we take SAP = 0 and consider the ideal mix-
ing in ω, we have the branching ratio 40.59% in case (I)
solution and 2.50% in case (II) solution for the process
D+

s → π+ω, which is much larger than the experimen-
tal data (0.28±0.11)%. Considering that the process may
have TV contribution if ω contains ss̄ fraction, the branch-
ing ratio can be minimized to 25.89% and 2.37% in the
case (I) and (II) solution respectively. To accommodate
the experimental data, one has to introduce significant
contribution from SAP in this process, i.e. SAP ∼ −AP .

The values of parameters aCV
and aEV

rely on the
processes D0 → K

∗0
η, D+

s → K
0
K∗+, D0 → ρ0K

0
and

D0 → ωK
0
. By analyzing these processes, the following

values are available1.

( I). |aCV
| = 1.00, δaCV

= −26.3◦,(49)

|aEV
| = 0.38, δaEV

= 50.9◦; (50)

(II). |aCV
| = 0.69, δaCV

= 134.1◦, (51)

1 There are another set of values aCV = 1.12e−i85◦
and

aEV = 0.27e−i160◦
in case (I) and another set of values

aCV = 1.22e−i155◦
and aEV = 0.08e−i172◦

in case (II) serv-
ing as solutions. We discard these solutions as disfavored ones
because their predicted branching ratios of some processes have
exceeded the experimental upper bounds. Moreover, it is gen-
erally believed that |aCP,V | should be smaller than |aTP,V |.

|aEV
| = 0.56, δaEV

= 57.3◦. (52)

At last, aTP
is related to the decay processes D+ →

ρ+K
0

and D0 → ρ+K−.

( I). |aTP
| = 1.23, δaTP

= 151.4◦;(53)

(II). |aTP
| = 1.09, δaTP

= −36.1◦.(54)

For convenience, we list in Table 6 the results ob-
tained in our present analysis. A distinct difference be-
tween the case (I) and case (II) solution is the contribu-
tions from the annihilation diagrams AV and AP . The case
(I) solution implies important contributions from AV and
AP , while the case (II) solution signifies relatively small
contributions from AV and AP . The resulting values im-
ply that nonfactorizable contributions are of significance
in D → PV decays. It is observed that the phase be-
tween amplitudes TV and TP is large in comparison with
that in [4], which leads to the breakdown of the relation
EP = −EV assumed as an input relation in [3,4]. If the W-
exchange amplitudes are dominated by quark-antiquark
intermediate states, then a sign flip of EP relative to EV

will be a consequence of charge-conjugation invariance. In
the present calculation, we show that EV is close to EP in
both cases, which means that the W-exchange amplitudes
are not governed by resonant final state interactions. Our
analysis is in favor of the claims [12] that the sign flip
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Table 9. SU(3) flavor symmetry relations and breaking of the relations. λ = |VcsVus/VcsVud| ≈ 0.226

SU(3) Symmetry Relations LHS of Relations in Case (I) LHS of Relations in Case (II)
|A(D0→π+K∗−)+

√
2A(D0→π0K

∗0)|
|A(D+→π+K

∗0)| = 1 1.0 1.0

|A(D0→ρ+K−)+
√

2A(D0→ρ0K
0)|

|A(D+→K
0
ρ+)| = 1 1.0 1.0

|A(D0→K
0
φ)−A(D+

s →π+φ)|
|A(D0→π+K∗−)| = 1 1.00 1.00

|A(D0→π+K∗−)+A(D0→K
0
φ)|

|A(D+
s →π+φ)| = 1 0.99 0.99

|A(D0→π+K∗−)−A(D+
s →π+φ)|

|A(D0→K
0
φ)| = 1 1.00 1.00

|λ√
2A(D+

s →π+ρ0)+
√

2A(D+→π+ρ0)|
|λA(D+→π+K

∗0)| = 1 0.87 0.87
|λA(D+→π+K

∗0)+
√

2A(D+→π+ρ0)|
|λ√

2A(D+
s →π+ρ0)| = 1 0.62 0.66

|λA(D+→π+K
∗0)+λ

√
2A(D+

s →π+ρ0)|
|√2A(D+→π+ρ0)| = 1 1.11 1.10

|λ√
2A(D+

s →π+ρ0)−√
2A(D+→π0ρ+)|

|λA(D+→ρ+K
0)| = 1 1.07 0.98

|λA(D+→ρ+K
0)+

√
2A(D+→π0ρ+)|

|λ√
2A(D+

s →π+ρ0)| = 1 0.69 0.90
|λ√

2A(D+
s →π+ρ0)|−λA(D+→ρ+K

0)
|√2A(D+→π0ρ+)| = 1 0.92 1.02

|λA(D+
s →K+K

∗0)+A(D+→K+K
∗0)|

|λA(D+→π+K
∗0)| = 1 0.89 0.89

|λA(D+→π+K
∗0)−A(D+→K+K

∗0)|
|λA(D+

s →K+K
∗0)| = 1 0.85 1.28

|λA(D+
s →K+K

∗0)−λA(D+→π+K
∗0)|

|A(D+→K+K
∗0)| = 1 1.19 0.81

|λA(D+
s →K

0
K∗+)+A(D+→K

0
K∗+)|

|λA(D+→ρ+K
0)| = 1 0.82 1.19

|λA(D+→ρ+K
0)−A(D+→K

0
K∗+)|

|λA(D+
s →K

0
K∗+)| = 1 0.93 1.43

|λA(D+
s →K

0
K∗+)−λA(D+→ρ+K

0)|
|A(D+→K

0
K∗+)| = 1 1.06 0.88

|λA(D+
s →K

0
K∗+)+

√
2A(D+

s →K∗+π0)|
|λ√

2A(D+
s →π+ρ0)| = 1 2.07 0.22

|λ√
2A(D+

s →π+ρ0)+
√

2A(D+
s →K∗+π0)|

|λA(D+
s →K

0
K∗+)| = 1 0.94 0.84

|λ√
2A(D+

s →π+ρ0)+λA(D+
s →K

0
K∗+)|

|√2A(D+
s →K∗+π0)| = 1 1.07 1.33

|A(D+
s →K0ρ+)|

|A(D+→K
0
K∗+)| = 1 1.01 0.77

|A(D+
s →π+K∗0)|

|A(D+→K+K
∗0)| = 1 1.19 0.76

|A(D0→K+K∗−)|
|A(D0→π+ρ−)| = 1 1.21 1.21

|λA(D0→π+K∗−)|
|A(D0→π+ρ−)| = 1 1.05 1.05

|A(D0→K+K∗−)|
|λA(D0→π+K∗−)| = 1 1.15 1.15
|A(D0→K−K∗+)|

|A(D0→π−ρ+)| = 1 1.16 1.12
|λA(D0→K−ρ+)|
|A(D0→π−ρ+)| = 1 1.08 1.06

|A(D0→K−K∗+)|
|λA(D0→K−ρ+)| = 1 1.07 1.06

of EV from EP is unexplained and the possibility of EV

being close to EP is not ruled out.
To further test our results, we present the resulting

predictions for a variety of charmed meson decay pro-
cesses in Table 4. It is noted that in our present analysis
the SU(3) symmetry breaking effects are not considered in
the strong phases, which may bring some deviation from
the experimental data. In this sense, our present predic-
tions are in agreement with the existed experimental data.
In addition, the predictions for a number of Cabibbo-

suppressed modes can be used to test our present anal-
ysis in the near future. For comparison, we list the results
obtained in [31].

It is of interest that we arrive at a satisfactory ex-
planation for the high branching ratio concerning to the
singly Cabibbo-suppressed process D+ → K

0
K∗+ if the

first case solution is considered. This process was selected
out in [6] to be as one of the puzzled processes. It was
claimed [6] that there is still not any model to explain
the anomalously high branching ratio of this decay mode
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Table 10. Breaking of the relations due to mass factors. λ = |VcsVus/VcsVud| ≈ 0.226

SU(3) Symmetry Relations LHS of Relations in Case (I) LHS of Relations in Case (II)
|A(D0→π+K∗−)+

√
2A(D0→π0K

∗0)|
|A(D+→π+K

∗0)| = 1 1.0 1.0

|A(D0→ρ+K−)+
√

2A(D0→ρ0K
0)|

|A(D+→K
0
ρ+)| = 1 1.0 1.0

|A(D0→K
0
φ)−A(D+

s →π+φ)|
|A(D0→π+K∗−)| = 1 1.03 1.03

|A(D0→π+K∗−)+A(D0→K
0
φ)|

|A(D+
s →π+φ)| = 1 0.95 0.95

|A(D0→π+K∗−)−A(D+
s →π+φ)|

|A(D0→K
0
φ)| = 1 1.00 1.00

|λ√
2A(D+

s →π+ρ0)+
√

2A(D+→π+ρ0)|
|λA(D+→π+K

∗0)| = 1 0.89 0.89
|λA(D+→π+K

∗0)+
√

2A(D+→π+ρ0)|
|λ√

2A(D+
s →π+ρ0)| = 1 0.77 0.61

|λA(D+→π+K
∗0)+λ

√
2A(D+

s →π+ρ0)|
|√2A(D+→π+ρ0)| = 1 1.09 1.10

|λ√
2A(D+

s →π+ρ0)−√
2A(D+→π0ρ+)|

|λA(D+→ρ+K
0)| = 1 1.09 1.05

|λA(D+→ρ+K
0)+

√
2A(D+→π0ρ+)|

|λ√
2A(D+

s →π+ρ0)| = 1 0.71 1.39
|λ√

2A(D+
s →π+ρ0)|−λA(D+→ρ+K

0)
|√2A(D+→π0ρ+)| = 1 0.91 0.95

|λA(D+
s →K+K

∗0)+A(D+→K+K
∗0)|

|λA(D+→π+K
∗0)| = 1 0.88 1.01

|λA(D+→π+K
∗0)−A(D+→K+K

∗0)|
|λA(D+

s →K+K
∗0)| = 1 0.97 1.00

|λA(D+
s →K+K

∗0)−λA(D+→π+K
∗0)|

|A(D+→K+K
∗0)| = 1 1.03 1.00

|λA(D+
s →K

0
K∗+)+A(D+→K

0
K∗+)|

|λA(D+→ρ+K
0)| = 1 0.97 1.07

|λA(D+→ρ+K
0)−A(D+→K

0
K∗+)|

|λA(D+
s →K

0
K∗+)| = 1 0.99 1.18

|λA(D+
s →K

0
K∗+)−λA(D+→ρ+K

0)|
|A(D+→K

0
K∗+)| = 1 1.01 0.95

|λA(D+
s →K

0
K∗+)+

√
2A(D+

s →K∗+π0)|
|λ√

2A(D+
s →π+ρ0)| = 1 1.30 0.73

|λ√
2A(D+

s →π+ρ0)+
√

2A(D+
s →K∗+π0)|

|λA(D+
s →K

0
K∗+)| = 1 0.98 0.93

|λ√
2A(D+

s →π+ρ0)+λA(D+
s →K

0
K∗+)|

|√2A(D+
s →K∗+π0)| = 1 1.02 1.09

|A(D+
s →K0ρ+)|

|A(D+→K
0
K∗+)| = 1 1.03 1.01

|A(D+
s →π+K∗0)|

|A(D+→K+K
∗0)| = 1 1.05 1.00

|A(D0→K+K∗−)|
|A(D0→π+ρ−)| = 1 1.03 1.03

|λA(D0→π+K∗−)|
|A(D0→π+ρ−)| = 1 1.00 1.00

|A(D0→K+K∗−)|
|λA(D0→π+K∗−)| = 1 1.03 1.03
|A(D0→K−K∗+)|

|A(D0→π−ρ+)| = 1 1.04 1.03
|λA(D0→K−ρ+)|
|A(D0→π−ρ+)| = 1 0.99 0.99

|A(D0→K−K∗+)|
|λA(D0→K−ρ+)| = 1 1.05 1.04

and if the high branching ratio is confirmed by more
precise experiments it may require new physics to ex-
plain it. Based on generalized factorization and including
resonance-mediated final state interactions, the branching
ratio of the process was calculated to be 1.52% and con-
sidered to be unnecessary to introduce new physics [32]. It
is seen from our present analysis that the second case so-
lution from our present analysis provides for this process
a rather low value comparing to experimental data. If the
data for this process is confirmed to have a high branch-

ing ratio by more precise experiments, then the first case
solution should be a favored one.

The disconnected diagrams are often considered to
have no contributions. The present experimental data do
not yet contradict with the vanished contributions of these
disconnected diagrams except SAV in D+

s → ρ+η and
D+

s → ρ+η′ and SAP in D+
s → π+ω. But as independent

parameters, whether these diagrams really vanish or how
much they contribute should resort to more experimental
data. Here we illustrate as an example to see what im-
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Table 11. Breaking of the relations due to formfactors and decay constants. λ = |VcsVus/VcsVud| ≈ 0.226

SU(3) Symmetry Relations LHS of Relations in Case (I) LHS of Relations in Case (II)
|A(D0→π+K∗−)+

√
2A(D0→π0K

∗0)|
|A(D+→π+K

∗0)| = 1 1.0 1.0

|A(D0→ρ+K−)+
√

2A(D0→ρ0K
0)|

|A(D+→K
0
ρ+)| = 1 1.0 1.0

|A(D0→K
0
φ)−A(D+

s →π+φ)|
|A(D0→π+K∗−)| = 1 0.97 0.97

|A(D0→π+K∗−)+A(D0→K
0
φ)|

|A(D+
s →π+φ)| = 1 1.05 1.05

|A(D0→π+K∗−)−A(D+
s →π+φ)|

|A(D0→K
0
φ)| = 1 1.00 1.00

|λ√
2A(D+

s →π+ρ0)+
√

2A(D+→π+ρ0)|
|λA(D+→π+K

∗0)| = 1 0.96 0.97
|λA(D+→π+K

∗0)+
√

2A(D+→π+ρ0)|
|λ√

2A(D+
s →π+ρ0)| = 1 1.04 1.16

|λA(D+→π+K
∗0)+λ

√
2A(D+

s →π+ρ0)|
|√2A(D+→π+ρ0)| = 1 1.02 1.01

|λ√
2A(D+

s →π+ρ0)−√
2A(D+→π0ρ+)|

|λA(D+→ρ+K
0)| = 1 0.97 0.92

|λA(D+→ρ+K
0)+

√
2A(D+→π0ρ+)|

|λ√
2A(D+

s →π+ρ0)| = 1 1.10 0.55
|λ√

2A(D+
s →π+ρ0)|−λA(D+→ρ+K

0)
|√2A(D+→π0ρ+)| = 1 1.03 1.07

|λA(D+
s →K+K

∗0)+A(D+→K+K
∗0)|

|λA(D+→π+K
∗0)| = 1 0.97 0.96

|λA(D+→π+K
∗0)−A(D+→K+K

∗0)|
|λA(D+

s →K+K
∗0)| = 1 0.84 1.07

|λA(D+
s →K+K

∗0)−λA(D+→π+K
∗0)|

|A(D+→K+K
∗0)| = 1 1.16 0.82

|λA(D+
s →K

0
K∗+)+A(D+→K

0
K∗+)|

|λA(D+→ρ+K
0)| = 1 0.86 1.10

|λA(D+→ρ+K
0)−A(D+→K

0
K∗+)|

|λA(D+
s →K

0
K∗+)| = 1 0.94 1.19

|λA(D+
s →K

0
K∗+)−λA(D+→ρ+K

0)|
|A(D+→K

0
K∗+)| = 1 1.05 0.93

|λA(D+
s →K

0
K∗+)+

√
2A(D+

s →K∗+π0)|
|λ√

2A(D+
s →π+ρ0)| = 1 1.71 0.42

|λ√
2A(D+

s →π+ρ0)+
√

2A(D+
s →K∗+π0)|

|λA(D+
s →K

0
K∗+)| = 1 0.95 0.91

|λ√
2A(D+

s →π+ρ0)+λA(D+
s →K

0
K∗+)|

|√2A(D+
s →K∗+π0)| = 1 1.05 1.22

|A(D+
s →K0ρ+)|

|A(D+→K
0
K∗+)| = 1 0.98 0.77

|A(D+
s →π+K∗0)|

|A(D+→K+K
∗0)| = 1 1.14 0.76

|A(D0→K+K∗−)|
|A(D0→π+ρ−)| = 1 1.16 1.16

|λA(D0→π+K∗−)|
|A(D0→π+ρ−)| = 1 1.05 1.05

|A(D0→K+K∗−)|
|λA(D0→π+K∗−)| = 1 1.11 1.11
|A(D0→K−K∗+)|

|A(D0→π−ρ+)| = 1 1.12 1.09
|λA(D0→K−ρ+)|
|A(D0→π−ρ+)| = 1 1.10 1.08

|A(D0→K−K∗+)|
|λA(D0→K−ρ+)| = 1 1.02 1.01

paction the nonvanished SEP has. The numerical results
are presented in Table 7 and Table 8. SEP is slightly off
zero and takes on the direction of EP in case (I) solution
and the inverse direction of EP in case (II) solution.

5 SU(3) invariant amplitudes

In factorization hypothesis, the coefficients ais are pro-
cess independent while the topological amplitudes are pro-
cess dependent. Phenomenologically, one can also extract

the SU(3) invariant amplitudes firstly and then use the
formula (3)-(6) and (24)-(27) to calculate the ais[12]. In
this way, the ais become process dependent yet the ampli-
tudes are process independent. To be more explicit, ais are
SU(3) invariant while the masses, the decay constants and
formfactors characterize the SU(3) symmetry breaking ef-
fects, which will lead to the SU(3) symmetry breaking in
the amplitudes in the viewpoint of the former method.
In the latter method, all the quantities, i.e. the ais, the
masses, the decay constants and formfactors are consid-
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ered to reflect SU(3) symmetry breaking effects in such a
way that the amplitudes are kept to be SU(3) invariant.

It is interesting to compare these two methods. For
that, we solve out the invariant amplitudes (case(α)) ac-
cording to the same procedure in the last section and
present them in Table 52. In Table 6, we provide the ais
calculated from the invariant amplitudes. It is noted that
we can not find a set of solutions indicating small con-
tributions from the annihilation diagrams AV and AP in
the SU(3) symmetry limit. From the position of factor-
ization hypothesis, |aCV,P

| should be smaller than |aTV,P
|,

which indicates that the aCV
in the case (α) solution is

not reasonable, while the case (I) and (II) solutions sound
reliable.

In [4], the topological amplitudes were extracted out
from the Cabibbo-favored D → PV decay modes firstly
and then were expanded to the singly Cabibbo-suppressed
modes by multiplying a Cabibbo suppression factor of
λ ≈ 0.226. Because there are no enough Cabibbo-favored
decay modes to solve out the amplitudes, some assump-
tions on the relation of EP and EV have to be made.
In addition, because there are no any more experimen-
tal data to constrain the solution, a set of solutions hav-
ing a small |CP | were thought to be favored by applying
some knowledge of the factorization hypothesis. Such a
set of solutions are listed in Table 5. The ais extracted
from this set of solutions are given in Table 6. Obviously,
these ais meet the requirement of factorization hypothe-
sis. But when these amplitudes are extended to the singly
Cabibbo-suppressed modes, some processes have inconsis-
tent results with experimental data. For example, with
this set of solutions, the process D+ → π+φ has a branch-
ing ratio 0.15% which is much smaller than the experimen-
tal result 0.61%. These processes require a solution with
a large CP . To be more explicit, we list the results (case
(α′) and case (β′)) extracted out without any assumption
on the exchange diagrams, by using the Cabibbo-favored
decay modes Br(D0 → π0K

∗0
) and Br(D+ → π+K

∗0
) as

inputs to extract the CP just as did in [4]. The case (α′)
solution is corresponding to the case (α) solution with a
large value of |CP |. While the case (β′) is corresponding
to the solution favored in [4] that having a small value
of |CP |. It is of interest that the case (β′) solution really
manifests the relation EP ≈ EV .

In short, the extracted amplitudes which are thought
to be favored in [4] can provide reasonable ais, but they
can not explain some Cabibbo-suppressed modes. Another
set of amplitudes (case (α) or case (α′)) can accommodate
more experimental data, but they give unreasonable ais.
So the method of extracting ais from the invariant am-
plitudes is not reliable to apply to the decay processes in
D → PV . The invalidity may result from the fact that
the SU(3) symmetry breaking effects in the D → PV de-
cays are significant to evoke the inconsistency between the
SU(3) flavor symmetry and the factorization hypothesis.
To obtain reasonable solution of ais that can cover all ex-

2 Other solutions are available when we solve the equations.
We have selected out this one as a favored solution by using
the experimental data in Table 4 as constraints.

perimental data, one should use the method disscussed in
the preceding section with considering the SU(3) symme-
try breaking effects.

6 SU(3) flavor symmetry breaking

As pointed out in [5], SU(3) breaking effects in charmed
meson decays appear to be important. In section 5 of this
paper, the SU(3) symmetry breaking effects are shown to
be large enough to invalidate the method of extracting the
ais from the invariant amplitudes in D → PV decays. In
the SU(3) flavor symmetry limit, there are a number of re-
lations among different decay modes. Based on the above
extracted values for the parameters, we can discuss how
large are the SU(3) breaking effects in D → PV decays.

We present these relations in Table 9, as well as the
left hand side(LHS) values of the relations in the second
and third columns corresponding to the case (I) and case
(II) solution respectively. The values in the second and
third columns deviating from unit represent the breaking
amounts of SU(3) flavor symmetry relations.

It is noted that though these relations deviating from
unit reflect the SU(3) flavor symmetry breaking effects,
the ones composed of three decay modes and those
composed of two decay modes have different sources of
breaking terms. To be clear, we take the expressions
|λA(D+→π+K

∗0)+
√

2A(D+→π+ρ0)|
|λ√

2A(D+
s →π+ρ0)| and |A(D0→K+K∗−)|

|A(D0→π+ρ−)| as
examples.

|λA(D+→π+K
∗0)+

√
2A(D+→π+ρ0)|

|λ√
2A(D+

s →π+ρ0)|

= |(TV +CP )(D+→π+K
∗0)−(TV +CP −AP +AV )(D+→π+ρ0)|

|AV (D+
s →π+ρ0)−AP (D+

s →π+ρ0)| ,

(55)
|A(D0→K+K∗−)|
|A(D0→π+ρ−)| = |TV (D0→K+K∗−)+EP (D0→K+K∗−)|

|−TV (D0→π+ρ−)−EP (D0→π+ρ−)| .

(56)

In the limit of SU(3) flavor symmetry, the following equa-
tions

TV (D+ → π+K
∗0

) = TV (D+ → π+ρ0), (57)

CP (D+ → π+K
∗0

) = CP (D+ → π+ρ0), (58)
AV (D+ → π+ρ0) = AV (D+

s → π+ρ0), (59)
AP (D+ → π+ρ0) = AP (D+

s → π+ρ0), (60)
TV (D0 → K+K∗−) = TV (D0 → π+ρ−), (61)
EP (D0 → K+K∗−) = EP (D0 → π+ρ−), (62)

make (55) and (56) equal to one. But from formula (3)–
(10), one can find that relations in (57)–(62) are in gen-
eral not valid. Both the different masses of the charmed
mesons and the final light mesons, and the different values
of formfactors and decay constants can break the relations
in (57)–(62), and thus break the SU(3) flavor symmetry
relations in (55) and (56). In addition, by comparing with
(55) and (56), one can see that the relations concerning
only two decay modes represent the relative SU(3) flavor
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symmetry breaking amounts of the same diagrams which
we call the main diagrams for convenience in later use,
while the relations consisting of three decay modes con-
tain additional SU(3) flavor symmetry breaking effects
from the other diagrams. So in the relations containing
three decay modes, if the SU(3) flavor symmetry break-
ing contributions of the other diagrams have comparable
amounts in comparison with the main diagrams, then the
relations will be broken down badly. The main diagram
|AV − AP | in D+

s → π+ρ0 is relatively small, which usu-
ally leads to a significant breaking for the relations when
taking D+

s → π+ρ0 as denominator. We present explicitly
these relations in the first case solution as follows

|λA(D+ → π+K
∗0

) +
√

2A(D+ → π+ρ0)|
|λ√

2A(D+
s → π+ρ0)| = 0.62,(63)

|λA(D+ → ρ+K
0
) +

√
2A(D+ → π0ρ+)|

|λ√
2A(D+

s → π+ρ0)| = 0.69, (64)

|λA(D+
s → K

0
K∗+) +

√
2A(D+

s → K∗+π0)|
|λ√

2A(D+
s → π+ρ0)| = 2.07.(65)

It is obvious that SU(3) flavor symmetry analysis is not
applicable to such processes.

The first five relations in Table 9 purely concern with
the Cabibbo-favored decay modes. The breaking effects
in these modes are less than 5%. In particular, the first
two relations still conserve because all the decay modes
in them form an isospin triangle respectively. Generally
speaking, the first case solution and the second case so-
lution have different SU(3) flavor symmetry breaking ef-
fects. The breaking effects due to masses and due to form-
factors and decay constants in the first case solution can
be as large as 21%, while in the second case solution the
breaking effects reach 43% (except those relations using
the process D+

s → π+ρ0 as denominator).
To be more explicit, we shall separately investigate the

SU(3) symmetry breaking effects caused by the masses
and by the formfactors and decay constants. To see the
SU(3) symmetry breaking effects due to mass difference,
we take for the formfactors and decay constants to be in
the limit

FDi→P
1 (0) = FD→π

1 (0), ADi→V
0 (0) = AD→ρ

0 (0),
fDi = fD, fP = fπ, fV = fρ. (66)

Vice versa, when we mention to the breaking due to form-
factors and decay constants, we adopt the relevant values
of formfactors and decay constants in Table 2 and 3 while
take the masses as mP = mπ, mV = mρ and mDi = mD

and mD∗
i

= mD∗ . We present the numerical results in Ta-
ble 10 and Table 11. It is seen that the breaking due to
masses is up to 12% in the first case solution, while it can
reach 18% in the second case solution. The breaking due
to formfactors and decay constants is about 16% in the
first case solution while in the second case solution it can
be as large as 24%.

7 Summary and conclusion

We have studied the D → PV decays in the formal-
ism of the factorization hypotheses. Two sets of solu-
tions for the parameters are obtained. The first case solu-
tion can give satisfactory explanation on the experimental
data, especially for the puzzled process D+ → K

0
K∗+.

The nonfactorizable corrections are likely to be impor-
tant in D → PV decays. The relations EP = −EV and
AP = −AV are far away from conservation, which means
that the assumption on the contributions of these four
diagrams coming mainly from the quark-antiquark inter-
mediate state interactions is not good enough to accom-
modate the experimental data. It also implies that, to give
a consistent analysis on the process D+

s → π+ω with the
experimental result, the disconnected diagram SAP in the
process D+

s → π+ω should play a significant role. Some
relations involving in contributions from AP − AV are no
longer reliable due to large SU(3) symmetry breaking ef-
fects of masses and of formfactors and decay constants.
In the formalism of the relations obtained in the SU(3)
symmetry limit, the case (I) solution indicates that the
breaking effects due to masses and due to formfactors
and decay constants are up to 12% and 16% respectively,
which can lead to the total breaking amount up to 21% in
certain process (except those relations using the process
D+

s → π+ρ0 as denominator), when the two symmetry
breaking effects due to masses and due to formfactors and
decay constants become to be coherently added. In case
(II) solution, the breaking effects due to masses and due to
formfactors and decay constants are up to 18% and 24%
respectively, and the total breaking amount can add up to
43% in certain process (except those relations using the
process D+

s → π+ρ0 as denominator). The SU(3) symme-
try breaking effects can bring about invalidity when one
tries to extract the coefficients a1 and a2 from the SU(3)
invariant amplitudes and hence should not be ignored in
the D → PV decay modes.

Acknowledgements. We would like to thank Y.F. Zhou for
valuable discussion. This work was supported in part by the key
projects of Chinese Academy of Sciences, the National Science
Foundation of China (NSFC), the BEPC National Lab Open-
ing Project and Associate Scheme at Abdus Salam ICTP, Italy.

References

1. L.L. Chau, H.Y. Cheng: Phys. Rev. D 36, 137 (1987);
Phys. Lett. B 222, 285 (1989); Phys. Rev. Lett. 56, 1655
(1986); L.L. Chau: Phys. Rep. 95, 1 (1983)

2. M. Gronau, O.F. Hernández, D. London, J.L. Rosner:
Phys. Rev. D 50, 4529 (1994); ibid. 52, 6356, 6374 (1995)

3. J.L. Rosner: Phys. Rev. D 60, 114026 (1999)
4. C.W. Chiang, Z. Luo, J.L. Rosner: Phys. Rev. D 67,

014001 (2003)
5. M. Savage, M. Wise: Phys. Rev. D 39, 3346 (1989); ibid.

40, 3127(E) (1989)
6. F.E. Close, H.J. Lipkin: Phys. Lett. B 551, 337 (2003)



204 M. Zhong, Y.L. Wu, and W.Y. Wang: Global analysis of D → PV decays and SU(3) flavor symmetry breaking effects

7. M. Gronau, J.L. Rosner: Phys. Rev. D 53, 2516 (1996);
A.S. Dighe, M. Gronau, J.L. Rosner: Phys. Lett. B 367,
357 (1996); ibid. 377, 325(E) (1996)

8. T. Feldmann, P. Kroll: Eur. Phys. J. C 5, 327 (1998); T.
Feldmann, P. Kroll, B. Stech: Phys. Rev. D58, 114006
(1998); Phys. Lett. B 449, 339 (1999); T. Feldmann, P.
Kroll: Phys. Scripta T 99, 13 (2002)

9. K. Hagiwara et al.: Phys. Rev. D 66, 010001 (2002) (URL:
http://pdg.lbl.gov)

10. L.L. Chau, H.Y. Cheng: Phys. Rev. D 39, 2788 (1989);
L.L. Chau, H.Y. Cheng, T. Huang: Zeit. Phys. C 53, 413
(1992); H.Y. Cheng, B. Tseng: Phys. Rev. D 59, 014034
(1999)

11. A. Ali, G. Kramer, Cai-Dian Lü: Phys. Rev. D58, 094009
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